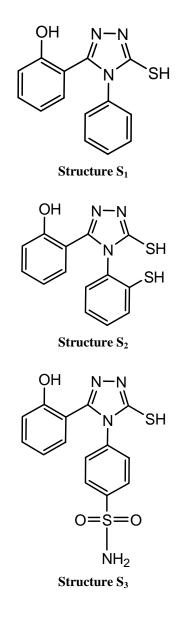
Synthesis and Antimicrobial Screening of Three Triazole Derivatives

M.H. Morshed¹, M.F. Islam³, M.A Yousuf¹, G.M.G. Hossain², J. A. Khanam³ and M.A. Salam²

¹Department of Chemistry, Khulna University of Engineering and Technology, Khulna-9203, Bangladesh ²Department of Chemistry, University of Dhaka, Dhaka, Bangladesh ³Department of Biochemistry & Molecular Biology, Rajshahi University, Rajshahi-6205, Bangladesh

ABSTRACT: Due to the medicinal importance of triazole derivatives, the antimicrobial property of three synthesized triazole derivatives were screened *in vitro* against some Gram positive and Gram negative pathogenic bacteria and some pathogenic fungi. In this study, three compounds 2-(5-mercapto-4-phenyl-4H-[1,2,4] triazole-3-yl]-cyclohexa-1,5-dienol (S₁), 2-[5-mercapto-4-(2-mercapto-phenyl)-4H- [1,2,4] triazole-3-yl]-phenol (S₂) and 4-[3-(2-hydroxy-phenyl)-5-mercapto-[1,2,4] triazole-4-yl]-benzene sulfonamide (S₃) have been synthesized. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were assessed by serial dilution technique. The compounds showed moderate antimicrobial activity against all the tested organisms and the results are comparable to standard antibiotic kanamycin. The MIC values of the compounds were found to be in the range of 16- 64μ g/ml. The low MIC and MBC values and high sensitivity of pathogenic microorganisms to the compounds led to conclude that the triazole derivatives have potential antimicrobial properties.

Key words: Antimicrobial, MIC, MBC, Triazole derivatives.


INTRODUCTION

One of the main causes of morbidity and mortality in immunocompromised patients in the developing countries is mainly due to the frequent life threatening infective diseases originated from various pathogenic microorganisms. A large number of drugs have been discovered so far to combat such situation. But none of these drugs could completely destroy such microorganisms in some cases. It is mainly because these organisms are developing resistance towards such drugs. As a result, the drugs already in use are gradually losing their effectiveness. The discovery of novel antibiotics which are much more effective against such microorganisms is essential. The 1,2,4-triazoles and

Correspondence to: Mohammad Abu Yousuf Cell Phone: 01714087402 E-mail: yousuf2716@yahoo.com

Dhaka Univ. J. Pharm. Sci. 10(1): 43-47, 2011 (June)

their derivatives are found to be associated with various biological activities such as anticonvulsant¹, antifungal², anticancer³, antiinflammatory⁴ and antibacterial properties.⁵ Also several compounds containing 1,2,4-triazole rings are well known as drugs. For example, fluconazole is used as an antimicrobial drug, while vorozole, letrozole and anastrozole are non-steroidal drugs used for the treatment of cancer. Furthermore, in recent years some Schiff base derivatives of 1,2,4-triazoles and their reduced derivatives have been also found to possess important pharmacological activities.⁶⁻⁸ In this context, these biological data prompted to investigate the antimicrobial activity of synthesized 2-(5-mercapto-4-phenyl-4H-[1,2,4] triazole-3-yl]cyclohexa-1,5-dienol (S_1) , 2-[5-mercapto-4-(2mercapto-phenyl)-4H- [1,2,4] triazole-3-yl]-phenol (S_2) and 4-[3-(2-hydroxy-phenyl)-5-mercapto-[1,2,4] triazole-4-yl]-benzene sulfonamide (S₃).

MATERIALS AND METHODS

The organisms used were collected from the Microbiology Laboratory of the Institute of Nutrition and Food Sciences, Dhaka University, Bangladesh. All chemicals used throughout the research were purchased from BDH (England) and used without further purification.

Preparation of inoculums. Suspension of organism was prepared as per McFarland nephelometer standard. A 24 hour old culture was used for the preparation of bacterial suspension. Suspension of organism was made in a sterile

isotonic solution of sodium chloride (0.9% w/v) and the turbidity was adjusted so that it contained approximately 1.5×10^8 cells/ml. It was obtained by adjusting the optical density of the bacterial suspension to that of a solution of 0.05 ml of 1.175% of barium chloride and 9.95 ml of 1% sulphuric acid.

Antimicrobial screening. The synthesized compounds were screened in vitro for their antimicrobial activity against three gram-negative (Escherichi coli, Shigella shiga and S. sonnei) and three gram-positive (Bacillus megaterium, B. subtilis, and Sarcina lutea) bacterial strains using disc diffusion method. Briefly, three calculated amount (5 mg, 10 mg and 20 mg) of the compounds S_1 , S_2 and S_3 were dissolved in 1 ml of DMSO in three different vials for getting solutions having concentrations of 50 µg/disc, 100 µg/disc and 200 µg/disc respectively. They were then applied on filter paper disc. Standard kanamycin (30 µg/disc) was used as positive control and DMSO as negative control. Both experimental and control discs were placed in petridishes seeded with organism in nutrient agar medium. The petridishes were kept in a refrigerator at 4°C for 24 hours to ensure diffusion of the test materials. Finally, they were incubated at 37±1°C for 24 hours and all experiments were done as triplicates. The antibacterial activity was determined by measuring the diameter of zone of inhibition in mm.

Determination of MIC and MBC. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of S_1 , S_2 , and S_3 were determined by serial dilution technique against the above mentioned pathogenic bacteria. S_1 , S_2 and S_3 were used from a concentration of 1 µg/ml to 512 µg/ml. A control test-tube containing only medium (nutrient broth medium) was used to confirm the sterility of the medium. Bacterial suspension (10 µl) containing 10^7 cells/ml was inoculated into all tubes. All of the test tubes were incubated at $37\pm1^{\circ}$ C and observed for bacterial growth for 24 hours for MIC and 96 hours (4 days) for MBC determinations

After inoculation for 24 hours, the test tube with no visible growth of the microorganism was taken to represent the MIC value of the sample in μ g/ml. MBC, in which no viable organism occurred was determined by keeping the test tubes which was used for MIC determination for four days. After four days, bacterial growth was observed and MBC was determined at lowest concentrations where no bacterial growth was observed.

Antifungal activity. For antifungal screening, each sample was tested at concentrations of 100, 200, 400 μ g/disc. The experimental protocol was almost same as antibacterial screening except the plates were incubated at $37\pm1^{\circ}$ C for 48h and Nystatin disc was used as positive control. All experiments were done in triplicates.

Statistical analysis. The experimental results have been expressed as the mean \pm SEM (Standard Error of Mean). Statistical analysis was performing with SPSS software of 10 versions.

RESULTS AND DISCUSSION

The results for the antibacterial activity of S_1 , S_2 , and S_3 as well as the Kanamycin have been presented in Table 1. The compounds showed a significant antibacterial activity against all test organisms. The diameter of zone of inhibition of S₁ at the dose of 50 µg/disc against B.megaterium, B. subtilis, E. coli, S. lutea, S. shiga, and S. sonnei were found to be 18 ± 1.2 , 19 ± 1.6 , 20 ± 1.0 , 17 ± 1.7 , 20 \pm 2.1 and 24 \pm 2.5 mm, respectively. These results indicate that compound S₁ is more effective against Bacillus megaterium (24±2.5 mm) and all these values were quite comparable with those obtained with kanamycin at dose 30 µg/disc in Table 1. The values of zone of inhibition for the compounds S₂ and S_3 at 50 µg/disc were also quite comparable with kanamycin at 30 µg/disc. Compound S2 showed highest inhibition of growth of S. lutea and B. megaterium (20 \pm 1.2 mm and 19 \pm 1.0 mm respectively) whereas compound S₃ revealed highest activity against Shi. shiga (20 ± 3.6 mm). All these compounds showed higher zone of inhibition when tested with higher doses (Table 1).

Table 1. Antibacterial activity of S1, S2, S3 and Kanamycin

Diameter of zone of inhibition (mm) Name of Sample Standard (Kanamycin) Name of bacteria Category of bacteria $30 \,\mu g/disc$ 50 µg/disc 100 µg/disc 200 µg/disc 18 ± 1.2 19 ± 1.5 23 ± 0.4 Shigella sonnei Gram 22 ± 1.0 2-(5-mercapto-4negative phenyl-4H-[1,2,4] Escherichia coli 19 ± 1.6 20 ± 2.2 21 ± 2.6 24 ± 1.0 bacteria triazole-3-yl]- 20 ± 1.0 21 ± 1.5 22 ± 0.5 Shigella shiga 26 ± 0.5 cyclohexa-1,5dienol Bacillus subtilis 17 ± 1.7 19 ± 1.2 20 ± 1.2 Gram 26 ± 0.5 positive Sarcina lutea 20 ± 2.1 23 ± 1.0 29 ± 2.1 27 ± 1.0 bacteria 24 ± 2.5 26 ± 2.8 28 ± 2.5 36 ± 0.4 Bacillus megaterium Shigella sonnei Gram 14 ± 1.0 15 ± 1.9 16 ± 1.4 2-[5-mercapto-4- 23 ± 0.5 negative (2- mercapto-Escherichia coli 15 ± 0.8 17 ± 2.0 19 ± 2.0 24 ± 0.4 bacteria phenyl)-4H-Shigella shiga 17 ± 2.5 19 ± 1.1 21 ± 1.6 26 ± 0.5 [1,2,4] triazole-3yl]-phenol Bacillus subtilis 19 ± 2.0 20 ± 0.4 Gram 17 ± 2.5 26 ± 1.5 positive Sarcina lutea 20 ± 1.2 21 ± 2.5 29 ± 3.1 27 ± 0.5 bacteria Bacillus megaterium 19 ± 1.0 22 ± 1.2 24 ± 1.1 36 ± 1.3 Shigella sonnei Gram 14 ± 1.0 16 ± 2.6 19 ± 1.0 4-[3-(2-hydroxy- 23 ± 1.1 negative phenvl)-5-Escherichia coli 17 ± 1.3 24 ± 1.5 15 ± 3.2 19 ± 2.1 bacteria mercapto-[1,2,4] Shigella shiga 19 ± 0.3 26 ± 1.0 20 ± 3.6 21 ± 2.5 triazole-4-yl]benzene Bacillus subtilis 19 ± 1.2 26 ± 1.2 Gram 17 ± 1.8 20 ± 0.4 sulfonamide positive Sarcina lutea 17 ± 3.5 29 ± 3.1 $27\pm\ 0.5$ 21 ± 1.0 bacteria 19 ± 3.4 Bacillus megaterium 16 ± 2.8 23 ± 2.0 36 ± 2.1

Test organism	S ₁		S_2		S_3	
	MIC µg/ml	MBC µg/ml	MIC µg/ml	MBC µg/ml	MIC µg/ml	MBC µg/ml
Shigella sonnei	32	128	64	256	32	256
Escherichia coli	32	64	16	256	16	64
Shi. shiga	16	32	32	64	32	128
Bacillus subtilis	16	32	16	128	64	128
Sarcina lutea	32	128	32	128	32	128
B. megaterium	16	64	32	64	64	256

Table 2. Minimum inhibitory concentration MIC and MBC of S₁, S₂ and S₃.

Table 3.	Antifungal	activity	of S1, S2,	S ₃ and	Nystatin

Name of fungi	Di	ameter of zone of in	nhibition (mm)		Standard
	100 μg/disc	200 µg/disc	400 µg/disc	Name of Sample	(Nystatin) 100 µg/disc
Candida albicans	R	13 ±1.6	14 ± 2.1		25 ± 2.3
Aspergillus fumigatus	R	12 ± 1.2	14 ± 1.8		26 ± 1.1
Vasinfactum sp.	R	R	13 ± 1.2	2-(5-mercapto-4-phenyl-	23 ± 0.6
Human-3 sp.	R	11 ± 2.1	14 ± 1.0	4H-[1,2,4] triazole-3-yl]- cyclohexa-1,5-dienol	21 ± 1.0
Aspergillus flavus	R	15 ± 1.4	17 ± 0.4	eyelonexa 1,5 dienor	29 ± 0.7
Aspergillus niger	R	16 ±2.2	19 ± 1.3		31 ± 1.3
Candida albicans	R	R	08 ± 0.3		22 ±1.2
Aspergillus fumigatus	R	10 ± 0.8	14 ± 1.3	2-[5-mercapto-4-(2-	26 ± 3.1
Vasinfactum sp.	R	R	11 ± 0.4	mercapto-phenyl)-4H-	24 ± 2.2
Human-3 sp.	09±1.3	12 ± 1.5	14 ± 1.5	[1,2,4] triazole-3-yl]-	21 ± 1.0
Aspergillus flavus	R	R	11 ± 2.3	phenol	29 ± 1.5
Aspergillus niger	R	R	12 ± 0.2		30 ± 0.5
Candida albicans	R	13 ±1.0	17 ± 1.4		24 ± 2.0
Aspergillus fumigatus	R	R	11 ± 1.1	4-[3-(2-hydroxy-phenyl)-	26 ± 2.5
Vasinfactum sp.	08±1.7	11 ± 1.8	15 ± 2.5	5-mercapto-[1,2,4]	31 ± 0.5
Human-3 sp.	R	R	09 ± 1.0	triazole-4-yl]-benzene	33 ± 1.6
Aspergillus flavus	R	R	11 ± 1.2	sulfonamide	26 ± 2.4
Aspergillus niger	R	R	12 ± 0.4		29 ±1.3

R= Resistance

The MIC values of S_1 , S_2 , and S_3 were determined against early cited six pathogenic bacteria and the results are shown in Table 2. The MIC values of S_1 were found to be between 16-32 µg/ml and the MBC values for S_1 were 32-128 µg/ml. On the other hand the MIC and MBC values of S_2 and S_3 were also found to be between 16-64 and 64-256 µg/ml in Table 2. From the above results, it is said that there is evident that there is no concrete correlation between antimicrobial activity, MIC and MBC values.

Antifungal activity of the compounds were also determined at three different doses (100, 200, 400 μ g/disc) against six pathogenic fungi such as

Aspergillus flavus, A. fumigatus, A. niger, Candida albicans, Human-3 sp, and Vasinfctum sp. At lower doses all these organisms were almost insensitive to the fat compounds but at higher doses the compounds showed mild to moderate antifungal activity which are given in Table 3. Compound S₁ showed highest activity against Aspergillus niger (zone of inhibition 16 ± 2.2 mm at 200 µg/disc) whereas S₂ and S₃ were effective to same extent against Human-3 sp. (zone of inhibition 09 ± 1.3 mm at 100 µg/disc) and Vasinfctum sp. (zone of inhibition 08 ± 1.7 mm at 100 µg/disc) respectively.

In the present study we observed almost similar antimicrobial characteristics of 2-(5-mercapto-4-

phenyl-4H-[1,2,4] triazole-3-yl]-cyclohexa-1,5dienol (S₁), 2-[5-mercapto-4-(2- mercapto-phenyl)-4H- [1,2,4] triazole-3-yl]-phenol (S₂) and 4-[3-(2hydroxy-phenyl)-5-mercapto-[1,2,4] triazole-4-yl]benzene sulfonamide (S₃). It is clear that the synthesized compounds have broad spectrum of antimicrobial activity. Further experiments are required to investigate the actual mechanism of bioactivities and their probable effects on animal model.

ACKNOWLEDGEMENT

The authors would like to thank the Department of Biochemistry and Molecular Biology, Rajshahi University for kindly providing laboratory facilities to carry out the work..

REFERENCES

 John, M.K., Bruce, M.B., Mark, W.D., Stephen, M.S., Michael, A.S. and Francis, P.M. 1990. 2, 4-Dihydro-3H-1, 2, 4-triazol-3-ones as anticonvulsant agents. *J. Med. Chem.* 33, 2772-77.

- Chollet, J.F., Bonnemain, J.L., Miginiac, L. and Rohr, O. 1990. Fungicidal activity of a series of 1-substituted-1-aryl-2-triazol-1-yl-ethanols. *J. Pestic. Sci.* 29, 427-435.
- Holla, B. S., Veerendra, B., Shivananda, M. K. and Poojary, B. 2003. Synthesis, characterization and anticancer activity studies on some Mannich bases derived from 1, 2, 4triazoles. *Eur. J. Med. Chem.* 38, 759-767.
- Gupta, A.K. and Bhargava, K.P. 1978. Some triazole analogs as anti-inflammatory agents. *Pharmazie* 33, 430-434.
- Malbec, F., Milcent, R., Vicart, P. and Bure, A.M. 1984. Synthesis of new derivatives of 4-Amino-2,4-dihydro-1,2,4triazol-3-one as potential antibacterial agents. *J. Heterocycl. Chem.* 21, 1769-1774.
- Bhat, A. R., Bhat, G.V. and Shenoy, G.G. 2001. Synthesis and *in vitro* antimicrobial activity of new 1,2,4-triazoles. *J. Pharm. Pharmacol.* 53, 267-272.
- Demirbas, N., Ugurluoglu, R. and Demirbas, A. 2002. Synthesis of 3-alkyl(Aryl)-4-alkylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-ones and 3-alkyl-4-alkylamino-4,5dihydro-1H-1,2,4-triazol-5-ones as antitumor agents. *Bioorg. Med. Chem.* 10, 3717-3723.
- Ishwar, K.B., Vinod, K.R. and Balakrishna K. 2004. Synthesis and pharmacological activity of some schiff bases derived from substituted 1, 2, 4-triazoles. *Asian J. Chem.* 16, 96-102.