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ABSTRACT: The coronavirus pandemic of 2019 (COVID-19) has adversely affected public health and the 
socioeconomic situation worldwide. Although there is no therapeutic drug to treat COVID, several treatment options 
are being considered to alleviate symptoms. Hence, researches on prophylactic treatment for COVID are being 
encouraged. Searching natural products is a rational strategy since it has served as a valuable source of lead 
compounds in drug discovery. In this study, three machine learning approaches, including Support Vector Machine 
(SVM), Random Forest (RF) and Gradient Boosting Machine (GBM), have been used to develop the classification 
model. The molecular docking was performed on AutoDock vina. Further, molecular dynamics (MD) simulation of 
the potential inhibitors was conducted using the AmberTools package. The accuracy for SVM, RF and GBM was 
found to be 60.45 %, 63.43 % and 64.93 %, respectively. Further, the model has demonstrated specificity range of 
41.67 % to 50.00 % and sensitivity range of 74.32 % to 79.73 %. Application of the model on the NuBBE database, a 
repository of natural compounds, led us to identify 322 unique natural compounds, likely possessing anti-SARS-
CoV-2activity. Further, molecular docking study has yielded three flavonoids and one lignoid compounds with 
comparable binding affinities to the standard compound. In addition, MD showed that these compounds form stable 
complexes with different magnitude of binding energy. The in silico investigations suggest that these four 
compounds likely demonstrate their anti-SARS-CoV-2activity by inhibiting the main protease enzyme. Our 
developed and validated in silico high-throughput investigations may assist in identifying and developing antiviral 
drug-like compounds from natural sources. 
 

Key words: SARS-CoV-2, COVID-19, main protease, natural products, high throughput screening, machine 
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INTRODUCTION 
 The severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) has been identified as 
the causative agent for the outbreak of coronavirus 
disease 2019 (COVID-19), the symptoms of which 
ranges from common cold, including fever, dry 
cough, fatigue, chest discomfort and in severe cases  
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dyspnea and respiratory failure.1-3 COVID-19 has 
been declared as a pandemic by the World Health 
Organization (WHO). Being highly transmissible, 
this disease has spread rapidly all over the world4,5 
and has infected at least 180 million individuals with 
a death toll of over 3.9 million as of June 2021. 
Usually, the children and young adults remain 
asymptomatic whereas older people or people with 
co-morbidities are prone to develop severe disease, 
respiratory failure and death.6 The SARS-CoV-2is a 
(+)ss-RNA virus. The RNA encodes 4 structural 
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[spike (S), envelop (E), membrane (M) and 
nucleocapsid (N)], 16non-structural and 9 accessory 
proteins (Figure 1). 
 SARS-CoV-2 spreads very rapidly and hence, 
demands an urgent need for treatment options until a 
vaccine, effective against all variants can be 
introduced. Manufacturing a vaccine that provides 
long term protection against this virus would be very 
challenging since it is RNA virus and has high 
mutation rate (Forni and Mantovani 2021). Besides, 
partially effective vaccine may not be efficient in 
controlling infectious diseases.7,8 Therefore, the need 
for effective antiviral drugs against SARS-CoV-2 is 
urgent and should be prioritized. However, none of 
the synthetic or semisynthetic antiviral drugs are not 
devoid of side effects.9 On the contrary, drugs from 
natural sources have little or no side effects, thus 
searching for new antiviral lead compounds from 
natural sources is still a rational strategy. Moreover, 
these leads can be modified and optimized to get 
more desirable effects. 

 In the current investigation, we have performed a 
high throughput screening using three machine 
learning approaches, including Support Vector 
Machine (SVM), Random Forest (RF) and Gradient 
Boosting Machine (GBM) to develop a model using 
the SARS-CoV-23CL protease or main protease 
inhibitors available in the ChEMBL database.10 The 
developed models were then subjected to identify 
natural compounds having anti-SARS-CoV-2 activity 
from the NuBBE database11, a database of natural 
products of Brazilian biodiversity. The potential 
inhibitors suggested by the machine learning methods 
were then subjected for molecular docking study 
which suggests four promising main protease 
inhibitors [podocarpusflavone A (PF), 7-O-
methoxyquercitrin (MQ) and proanthocyanidin (PA) 
and chimarrhinin (CM)] having comparable binding 
affinity to the standard compound (V7G). Further, the 
four inhibitors-enzyme complexes were subjected for 
molecular dynamic simulation for a period of 100 ns 
in explicit water. 

 

 
Figure 1. Structure and genome organization of SARS-CoV-2 virus.12,13 The Figure was created in BioRender.com 
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MATERIALS AND METHODS 
 Dataset building. The SARS-CoV-23CL 
protease or main protease inhibitors reported in the 
ChEMBL database10 were curated in March 2021. 
After removing duplicate data, a total of 6424 
inhibitors were obtained. Compounds that do not 
bind to the receptor is required to test false positives. 
Negative results are seldom reported and an accurate 
choice of decoys is still a subject of intense research 
effort.14 Therefore, we have divided the dataset into 
‘active’ if its IC50 or % inhibition is ≤ 1 μM or > 50 
% and represented as ‘1’ and ‘inactive’ if its IC50 or 
% inhibition is > 1 μM or < 1 % and represented as 
‘0’.15 In this way, the dataset of 535 compounds was 
divided into295 (~ 55 %) active and 240 (~ 45 %) 
inactive ligands. The dataset was then split into 
training and test sets containing 401 (75 %) and 134 
(25 %) ligands, respectively. 
 Descriptors calculation. The 2048 bits Morgan 
fingerprints descriptors was calculated for each of the 
inhibitor using the Python toolkit RDKit.16 The 

fingerprints represent a sub-structural feature and can 
differentiate two dissimilar chemical structures. For a 
particular structure, the presence and absence of a 
substructure are represented by ‘1’ and ‘0’, 
respectively. 
 Machine learning methods. Three machine 
learning methods were used to build the classification 
models which were Support Vector Machine (SVM) 
is a powerful machine learning method (suitable for 
classification of nonlinear problems)17, Random 
Forest (RF) method18 (a widely used method due to 
its prediction accuracies, ease of use and robustness 
to adjustable parameters)19 and  Gradient Boosting 
Machine (GBM) method (a competitive and highly 
robust method for classification problems).20 
 Model validation. The accuracy, sensitivity, 
specificity, Matthews correlation coefficient and 
Cohen’s kappa statistic of the test set were used to 
evaluate the performances of the models using the 
following equations.21, 22 

 

     

  

  

Here, 
TP = True positive indicating the number of actives predicted correctly,  
TN = True negative indicating the number of inactives predicted correctly 
FP = False positive indicating the number of inactives mispredicted as actives, 
FN = False negative indicating the number of actives mispredicted as inactives. 
po = Observed agreement 
pe = Expected agreement 
 Application of the developed model to identify 
new inhibitors from natural products. NuBBE 
database is a library of natural products of Brazilian 
biodiversity11 containing a large variety of chemical 
classes and structural types of secondary metabolites 
obtained from plants, fungi, insects, marine 
organisms and bacteria. A total of 2111 compounds 
of different chemical classes, including alkaloids, 
amino acids and peptides, aromatic derivatives, 
chalcones, flavonoids, lignoids, lipids, carbohydrates, 

phenylpropanoids, polyketides, tannins and terpenes, 
were downloaded from the database23. These 
compounds were then subjected to the developed 
model to identify natural products exhibiting anti 
SARS-Cov-2 activity by inhibiting the main protease 
enzyme. 
 Molecular docking. Preparation of target 
protein. The main protease of SARS-CoV-2 is critical 
for the assembly of viral replication-transcription 
complex and the release of viral proteins.24 Thus, it 
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plays an essential role in the replication and 
pathogenicity of the virus.24,25 Therefore, the main 
protease serves as an attractive drug target to combat 
viral replication and pathogenesis.24,26 
 The ligand-bound conformation of protein 
structure is the prerequisite to perform molecular 
docking study since during docking, software 
searches complementary binding site/(s) for ligand 
within the search space of the target protein.27 
Moreover, the structure should be solved with a 
reasonable accuracy, which is reflected in the 
statistics for data processing and refinement of the X-
ray crystal structure. The refinement statistics such as 
Rwork/Rfree, RMS deviation from ideality (bonds and 
angles) and validation parameters including 
Ramachandran outliers, rotamer outliers, bad bond or 
bad angle count indicate the quality of the built 
model structure. In our current investigation, we have 
selected the crystal structure of SARS-CoV-2 main 
protease complexed with V7G (GRL-024-20) (PDB 
ID: 6XR3)28 since the structure was solved at 1.4 Å 
resolution with Rwork/Rfree of 0.143/0.187 and the 
validation parameters indicate good quality of the 
build model structure. Water molecules and ligands 
of the model structure were removed and polar 

hydrogen atoms were added to the protein using 
PyMOL.29 Energy minimization was performed by 
YASARA force field level of theory in the YASARA 
Energy Minimization Server.30 After energy 
minimization, the macromolecule was prepared for 
docking using MGLTools.31 
 Preparation of ligands. The molecular geometry 
of the identified compounds was optimized with the 
Universal Force Field (UFF) level of theory. Then, 
appropriate partial charges were assigned to the 
structures using Open Babel.32 
 Validation of docking protocol. The docking of 
the target protein with the ligand was conducted 
using AutoDock vina.33 The docking method was 
first validated by re-docking V7G into the binding 
pocket of main protease. Different volumes of boxes 
with a center of the binding site were used to get the 
optimal box volume. The (20.00 × 20.00 × 20.00) Å3 
box centered at the binding site resulted in the most 
optimal docking performance (the root mean square 
deviation (RMSE) was <2 for all non-hydrogen 
atoms) (Figure2). Thus, the docking method has 
reasonable accuracy and reproducibility and can be 
used for further docking experiments. 

 

 
Figure 2. Validation of docking protocol. The experimental and docked V7G are represented in green and pink color, respectively. 
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 Protein-ligand docking. The docking of the 
identified ligands was conducted using the optimal 
box volume and center. Throughout the docking 
study, the flexible ligand searched its complementary 
site(s) within the search space of rigid 
macromolecule. Ligands with the lowest binding 
affinity and promising binding pose were chosen as 
the best conformation. The interactions of ligands 
with main protease were analyzed by PyMOL.29 
 Molecular dynamics simulation. The best 
docking pose of the compounds was selected to 
examine the interactions of ligand with the active site 
of enzyme. The molecular dynamic simulation was 
performed using the selected compounds for 100 ns 
in explicit water.The AmberTools package was 
applied asfull Amber topology/coordinate files for all 
ligands.34 The VDW and the bonded parameters of 
different ligands were computed using the 
antechamber program of AmberTools with the 
general amber force field (GAFF) 35,while the protein 
was modelled by theAMBERff14SB force field.36 
The RESP charge model was used to obtain the 
partial atomic charges.37 The TIP3P water model was 
used to solvate the compounds and ions added to the 
box to neutralize the system. The periodic boundary 
condition (PBC) was applied in three dimensions. All 
MD simulations were performed by a parallel version 
of SANDER in AmberTools 19 software package.38 
Before performing the MD simulation of protein-
ligand complexes, the steepest descent algorithm was 
examined to minimize their energy and a leap-frog 
algorithm was considered to integrate their motion.39 
In this process, the effect of long-range electrostatic 
interactions of molecules was observed using the 
Particle mesh Ewald (PME) method.40 To simulate 
the limitations of H-bonds in this process, the LINKS 
algorithm was studied in both equilibration and 
production runs.41The cutoff for nonbonded 
interactions was set to 12.0 nm. After the energy 
minimization, the system was simulated for 20 ps in 
the canonical ensemble (NVT) and with a 1 ns time-
step in the NPT ensemble. The Langevin dynamics 42 
and Parrinello-Rahman 43 models were studied to 

couple the temperature and pressure of the system 
using coupling constants of 0.1 and 0.5 ps, 
respectively. 
 
RESULTS AND DISCUSSION 
 Support vector machine (SVM) model. Three 
parameters such as a kernel function, a kernel 
coefficient and a penalty parameter are required to 
build an SVM model. The radial based function (rbf) 
was used as a kernel function in the SVM model. 
Optimized values for other hyperparameters such as 
the penalty parameter C and the kernel coefficient 
gamma were obtained by a 5-fold cross-validated 
grid search process. The best values or C and gamma 
were found 10 and0.0001, respectively. 
 Random forest (RF) model. To build the RF 
model two parameters are required:the n_estimators 
and the max_features.These parameters were also 
obtained by a grid search process following the 
technique described above. The optimal values of 
n_estimators and max_features were found 100 and 
204, respectively. 
 Gradient boosting machine (GBM) model. In 
the GBM, only the n_estimators were optimized by a 
grid search process following the technique described 
earlier. The other parameters such as subsample and 
max_features, were set to 0.5. The optimum value of 
n_estimators was found to be 100. 
 Performance metrics of the models. The 
accuracy of the training set for SVM, RF and GBM 
were 60.45 %, 63.43 % and 64.93 %, respectively, 
indicating excellent performance of the developed 
methods. The models were then subjected to validate 
the test set. The performance metrics such as 
accuracy, sensitivity, specificity, Matthews 
correlation coefficient and Cohen’s kappa statistics of 
the test set are presented in Table 1. The performance 
metrics suggest that all the three methods have good 
specificity, accuracy and sensitivity. 
 Identification of potential main protease 
inhibitors from natural products using machine 
learning. The SVM, RF and GBM suggested 89, 735 
and 802 natural compounds, respectively, would have 
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anti-SARS-CoV-2 activity with a probability of at 
least 0.5. To make a robust prediction, molecules 
with at least 70 % probability of being active were 
selected. The application of this filter yielded 322 

unique compounds (10, 270 and 315 compounds 
from SMV, RF and GBM, respectively). These 
compounds were then further screened using 
molecular docking study.  

 
Table 1. Parameters and Performances of Support Vector Machine, Random Forest and Gradient Boosting. 
 

Models 
Test set 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Matthews correlation 
coefficient 

Cohen’s kappa 
statistic 

Support vector machine  60.45 75.68 41.67 0.18 0.18 

Random forest 63.43 74.32 50.00 0.25 0.25 

Gradient boosting 64.93 79.73 46.67 0.28 0.27 

 
Identification of potential main protease inhibitors 
from natural products using molecular docking. 
The molecular docking study revealed that the 
standard compound V7G interacted with the main 
protease with a binding affinity of -8.9 Kcal/mol. 
Therefore, we set a threshold of -8.8 Kcal/mol 
binding affinity to short list potential inhibitors from 
the docking study. Application of this threshold 
yielded three flavonoids [NuBBE_199: 
Podocarpusflavone A (PF), NuBBE_321: 7-O-
Methoxyquercitrin (MQ) and NuBBE_359: 
Proanthocyanidin (PA)] and one lignoid 
[NuBBE_510: Chimarrhinin (CM)] compounds. 
Table 2 represents binding affinity of standard 
compound and the identified potential natural 
inhibitors of SARS-CoV-2 main protease. Molecular 
docking study demonstrated that the identified 
lignoid showed higher binding affinity (-9.0 
Kcal/mol) than the standard compound. 
 Molecular mechanism of main protease 
inhibition. The molecular mechanism of main 
protease inhibition was also explored using molecular 
docking study. The docking study revealed that all 
the inhibitors occupy the same position to that of 
GRL-024-20 in the main protease/GRL-024-20 
complex structure 28. The PFshowed identical binding 
affinity (-8.9 Kcal/mol) to that of standard compound 
GRL-024-20and forms hydrogen bonding with 
Thr25, Thr26, Gly143, His163, His164 andGlu166 
and approaching within 4.0 Å from the side chain of 
Leu27, Phe140, Leu141, Asn142, Ser144, Cys145 

and Met165(Figure 3A). The MQ interacts with the 
enzyme with a binding affinity of -8.8 Kcal/mol and 
makes hydrogen bonding withTyr54, Leu141, 
Asn142, Gly143, Ser144, His163, Glu166 and 
Arg188, and is positioned withing 4.0 Å from the 
side chain of His41, Cys44, Met49, Pro52, Leu141, 
Cys145, His164 and Met165 (Figure 3B). PA 
displayed similar binding affinity to that of MQ and 
forms hydrogen bonding with Thr25, His41, Leu141, 
Ser144, Cys145, His163 and Gln189, and located 
within 4.0 Å from Thr26, Leu27, Met49, Tyr54, 
Asn142, Gly143, His164, Met165, Glu166, Asp187 
and Arg188 (Figure 3C). The lignoid CM showed the 
highest binding affinity (-9.0 Kcal/mol) and makes 
hydrogen bonding with His41, Tyr54, Leu141, 
Asn142, Gly143, Ser144, Cys145, Glu166 and 
Arg188. This complex is further stabilized by van der 
Waals interactions with Leu27, Met49, His163, 
Met165, Asp187 and Gln189 (Figure 3D). 
 Evaluation of flexibility and conformational 
differences between apo and bounded main 
protease. MD simulation was performed on the four 
complexes of ligands and the main protease. The root 
mean square deviation (RMSD) of Cα atoms of the 
protein backbone was monitored throughout the 100 
ns simulation to test the stability of trajectories 
derived from MD simulation and it is shown in 
Figure 4.MD simulation of the inhibitor protease 
system indicates that the protease structure remains 
very similar to that of the x-ray structure with an 
RMSD of 0.174 nm (Figure 4).Analysis of the  
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Table 2. Compound code, common name, chemical structure and binding affinity with main protease or main protease of SARS-

CoV-2. 
 

Compound 
code Common name Chemical structure Binding affinity 

(Kcal/mol) 

V7G GRL-024-20 

  

-8.9 

NuBBE_199 Podocarpusflavone A 

  

-8.9 

NuBBE_321 7-O-methoxyquercitrin 

  

-8.8 

NuBBE_359 Proanthocyanidin 

  

-8.8 

NuBBE_510 Chimarrhinin 

  

-9.0 



8 Arifuzzaman et al. 

 
 
Figure 3. Interactions of (A) Podocarpusflavone A (NuBBE_199), (B) 7-O-Methoxyquercitrin (NuBBE_321), (C) Proanthocyanidin 

(NuBBE_359) and (D) Chimarrhinin (NuBBE_510) at the binding site of main protease enzyme. The ligand and interacting residues of 
protein are presented in pink and green color, respectively. Black dash indicates hydrogen bonding. 

 

Figure 4. RMSD of alpha carbon atoms of main protease and its four complexes as a function of simulation time. 

 
RMSD showed that the overall RMSD of the Cα 
atoms of PF, MQ,PA and CM were about 0.154 nm, 
0.126 nm, 0.216 nm and 0.226 nm, respectively 
suggesting the freedom of protein movement due to 
the former two (PF and MQ) complex formation is 
less than the latter two complexes (PA and CM). 

 The root mean square fluctuation (RMSF) 
indicates the fluctuation of every single residue from 
its reference position and is an important parameter 
for assessing amino acid motion restrictions due to 
interaction with ligands. The results of the RMSF 
analysis indicate that the main fluctuations 
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correspond to residues located in the ligand-binding 
cavityformed by the domains I and II (six-stranded 
antiparallel β barrels) of the enzyme (Figures 3 
and5)44.In domain I,the mobility is highest for CM 
followed by MQ whereas the highest fluctuations 

were observed for PA followed by CM in domain II. 
The fluctuations in domain III, which is responsible 
for regulating the dimerization, do not significantly 
affect the substrate-binding site of the enzyme. 
Therefore, they have not been considered. 

 

 
Figure 5. RMSF of residues of main protease\Podocarpus flavone A, \7-O-methoxyquercitrin, \Proanthocyanidin and 

\Chimarrhinincomplexes. 
 
Table 3. Hydrogen bond formation analysis between inhibitors and main protease (Mpro). 
 

Inhibitors Residue  Donor atom  Acceptor atom  Occupancy (%) 
Podocarpusflavone A (PF) Thr26 H (Mpro) O35(PF) 5.80 

Asn119 H (Mpro) O38(PF) 26.10 
His164 H10 (PF) O (Mpro) 24.70 

7-O-methoxyquercitrin (MQ) Asn142 H21 (MQ) OD1 (Mpro) 10.40 
Gly143 H (Mpro) O32 (MQ) 2.10 
Glu166 H (Mpro) O31 (MQ) 10.80 
His164 H23 (MQ) O (Mpro) 16.76 
Thr26 H18 (MQ) O (Mpro) 15.22 

Proanthocyanidin (PA) Gln192 HE22 (Mpro) O39 (PA) 44.22 
Ser46 H4 (PA) O (Mpro) 10.32 
His164 H10 (PA) O (Mpro) 10.32 

Chimarrhinin (CM) His41 H39 (CM) O (Mpro) 7.74 
Leu141 H23 (CM) O (Mpro) 2.52 
Asn142 HD21 (Mpro) O35 (CM) 6.80 
Gly143 H (Mpro) O34 (CM) 2.05 
Ser144 H (Mpro) O33 (CM) 11.96 
Glu166 H23 (CM) OE1 (Mpro) 10.62 
Arg188 H27 (CM) O (Mpro) 8.21 
Glu166 H22 (CM) OE2 (Mpro) 35.55 

 

 Hydrogen bond analysis. MD simulation of the 
protein-ligand complex was performed over the 100 
ns time to determine the hydrogen bonding stability 
of PF, MQ, PA and CM with the main protease. The 
hydrogen bond analysis was conducted using Amber 
Tools. The applied threshold of hydrogen bond 

formation was 3 Å with an angle of 150�.The 
analysis of the H-bonding is shown in Table3. Table 
3 shows that PF forms three stable H-bonding with 
Thr26, Asn119and His164.The stability of H-bonding 
is more substantial with Asn119 (26.1 %) and His164 
(24.7 %) as indicated by the occupancy. Further, MQ 
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forms H-bonding with Gly143, Glu166, Asn142, 
His164 and Thr26. Among these, ligand forms stable 
interactions with Thr26 and His164 with 15.22 % and 
16.76 %occupancy, respectively. The PA makes H-
bonding with Gln192, Ser46 and His164. The 
occupancy of these H-bonding suggests that the 
ligand forms stable interaction with Gln192 (44.22 
%). In addition, CM forms H-bonding with Asn142, 
Gly143, Ser144, His41, Leu141, Arg188 and Glu166. 
The H-bonding between the ligand and Glu166 was 
most stable, accounting for 35.55% of the simulation 
time. 
 Free energy of binding. The free energy of 
binding between ligand-receptor interactions was 

evaluated using the MM-GBSA method. The results 
of free energy of binding are presented in Table 4. 
From Table 4 it is clear that the van der Waals energy 
(ΔEvdW) term is the major contributing factor for 
ligand binding energy in PF, MQ and PA complexes. 
The van der Waals energy (ΔEvdW) and the 
electrostatic energy (ΔEEEL) terms contribute to the 
CM-main protease binding energy. The total binding 
energy of all the complexes declines mainly due to 
the polar solvation free energy (ΔEGB). The binding 
free energies of PF, MQ, PA and CM with the main 
protease were found to be -17.59 Kcal/mol, -21.27 
Kcal/mol, -32.86 Kcal/mol and -31.54 Kcal/mol, 
respectively. 

 
Table 4. MM-GBSA binding energies (kcal/mol). 
 

Energy Podocarpus flavone A 7-O-Methoxyquercitrin Proanthocyanidin  Chimarrhinin 

Van der Waal energy (ΔEvdW) -29.07 -34.34 -46.37 -44.73 

Electrostatic energy (ΔEEEL) -15.29 -14.95 -20.88 -47.09 

Polar solvation energy (ΔEGB) 30.81 32.75 39.84 67.01 

SASA energy (ΔESURF) -4.03 -4.73 -5.44 -6.73 

Gas-phase energy (ΔGGAS) -44.37 -49.29 -67.25 -91.82 

ΔGSOL 26.78 28.02 34.40 60.28 

ΔGBinding energy -17.59 -21.27 -32.86 -31.54 

 

 The outbreak of COVID-19 has led to a global 
crisis with increasing morbidity. The scale and rapid 
contagious nature of this disease demands an urgent 
need for treatment options before an effective vaccine 
can be produced. There is a long series of infectious 
diseases in which vaccines are only partially effective 
7 and hence, a series of vaccine defeats.8 Besides, the 
ongoing research on COVID-19 in laboratories 
worldwide are adding new data at a tremendous pace, 
making it difficult to predict what kind of vaccine can 
be truly effective.7 Further, the SARS-CoV-2 is an 
RNA virus and generally have a high mutation rate 
which also represent a challenge to develop effective 
vaccines against these viruses.7 
 Therefore, the need for effective antiviral drugs 
against SARS-CoV-2 is urgent and should be 
prioritized. However, none of the synthetic or 
semisynthetic antiviral drugs are not devoid of side 
effects.9 On the contrary, drugs from natural sources 

have little or no side effects. Therefore, to identify 
anti-SARS-CoV-2 drugs from natural sources we 
performed a high throughput screening using 
machine learning models followed by molecular 
docking. In the current study, a natural compound 
database (NuBBE) was subjected to in silico 
screening to identify natural compounds with anti-
SARS-CoV-2 activity. Before that, we trained and 
validated our model using the main protease 
inhibitors curated from the ChEMBL database.10 Our 
classification models (SVM, RF and GBM) predicted 
that 322 unique compounds would exhibit anti-
SARS-CoV-2 property by inhibiting the main 
protease. 
 Further, our molecular docking study revealed 
that three flavonoids (PF, MQ and PA) and one 
lignoid (CM)compounds possess comparable binding 
affinity (-8.8 Kcal/mol to -9.0 Kcal/mol) to the 
standard compound, GRL-024-20 (-8.9 Kcal/mol) 
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and occupy the same binding position to that of GRL-
024-20in the main protease/GRL-024-20 complex 
structure.28.In addition, MD simulation showed that 
all the compounds form stable complex with different 
magnitude of binding energy. The main protease is a 
cysteine protease with a catalytic dyad composed of 
Cys145 and His41.24,44 Therefore, compounds 
interacting with these residues most likely inhibit 
main protease activity.24 All the four compounds 
interact with the catalytic dyad and hence, likely 
inhibit the enzyme action. A literature survey 
revealed that flavonoids and lignoids inhibits the 
main protease and thereby, demonstrated their anti-
viral activity.45-49 Therefore, our current developed 
and validated machine learning methods have reliable 
prediction accuracy and successfully identified 
natural compounds with main protease inhibitory 
activity. Besides, our molecular docking and MD 
simulation studies revealed the likely mechanism of 
main protease inhibition by the identified 
compounds. 
 
CONCLUSION 
 Natural products have been a useful repository of 
organic compounds for drug discovery. However, 
exploring the drugs from this resource has diminished 
in the past two decades, in part because of technical 
barriers to screening natural products in high-
throughput assays against molecular targets.50 This 
problem can be overcome by the application of 
computational techniques. These techniques involve 
training of models that relate molecular features to 
targeted activities,51 thereby, allow potential 
compounds to be screened in silico, reducing costs 
and saving time.15 In the current study, we have 
developed and validated a high throughput in silico 
screening method to identify potential compounds 
from natural sources. Our in silico screening yields 
four compounds as potential main protease inhibitors. 
Further, we have explored the likely mechanism of 
main protease inhibition by the identified 
compounds. Our current study will assist in 
identifying novel drugs from natural sources and 
optimize them to have more desired and less adverse 

effects. However, further in vitro biophysical and 
biochemical research is recommended to validate the 
in silico results. 
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